Part Number Hot Search : 
A1526 CM108 80021 RL205 BSS145 SMAXXC C1500 SIEMENS
Product Description
Full Text Search
 

To Download HA12206 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 HA12206NT
Audio Signal Processor for Cassette Deck
ADE-207-198B (Z) 3rd Edition Jun. 1999 Description
HA12206NT is silicon monolithic bipolar IC providing music sensor system, ALC, REC equalizer system and each electronic control switch in one chip.
Functions
* REC equalizer * Line Amp. x 2 channel x 2 channel
* ALC (Automatic Level Control) * MS (Music Sensor) * Each electronic control switch to change REC equalizer, bias, etc. * REC mute
Features
* REC equalizer is very small number of external parts, built-in 2 types of frequency characteristics. * Correspondence with normal position (TYPE I) / high position (TYPE II). * TYPE I / TYPE II and PB equalizer fully electronic control switching built-in. * Controllable from direct micro-computer output. * Available to reduce substrate-area because of high integration and small external parts.
HA12206NT
Pin Description, Equivalent Circuit (VCC = 7.0V, VEE = -7.0V, Ta = 25C, No signal, The value in the table show typical value.)
Pin No. 2 Pin Name PB-Ain (R) Note V=0 Equivalent Circuit Pin Description A Deck PB input
V 100k
29 4 27 5 26 9 22 12 3
PB-Ain (L) PB-Bin (R) PB-Bin (L) REC-in (R) REC-in (L) EQ-in (R) EQ-in (L) MIMS AB out (R) V=0
14.9k 10.6k V
B Deck PB input
REC input
Equalizer input
MS Gain control Time constant for NAB standard
28 6
AB out (L) ATT (R) V=0
V
Variable impedance for attenuation
25 7
ATT (L) RPOUT (R)
VCC
REC or PB output
VEE
24
RPOUT (L)
Rev.3, Jun. 1999, page 2 of 32
HA12206NT
Pin Description, Equivalent Circuit (VCC = 7.0V, VEE = -7.0V, Ta = 25C, No signal, The value in the table show typical value.) (cont)
Pin No. 8 Pin Name ADD in (R)
100k 23 100k 100k
Note
Equivalent Circuit
Pin Description Adder input
8 100k 100k
23 10
ADD in (L) EQOUT (R) V = 0V Equalizer output
100k V
21 11
EQOUT (L) IREF V = 1.2V Equalizer reference current input
V
13
DET MS
V = VCC - 4.2V
V
Time constant for rectifier
15 16
DET ALC MS
V = 2.3V MS output
Rev.3, Jun. 1999, page 3 of 32
HA12206NT
Pin Description, Equivalent Circuit (VCC = 7.0V, VEE = -7.0V, Ta = 25C, No signal, The value in the table show typical value.) (cont)
Pin No. 17 Pin Name Acr Note V = 0V Equivalent Circuit
VCC
Pin Description Mode control
22k 100k V
18 19 20 1 14 30
Bcr REC MUTE REC / A / B VEE VCC GND V = 2.5V VEE pin VCC pin GND pin
Rev.3, Jun. 1999, page 4 of 32
PB Ain (L) 5V R1L 15k C3L + ATTL RPOUTL ADDINL -30dBs 100k Mute 14.9k SW3L 20dB C REC 27.5dB SW2L ALC DET N SW1L + - - + (580mV) -2.5dBs 67k 1k 10.6k 22.7k SW4L EQINL EQOL RECAB RECMUTE BCR ACR MS C2L 0.1 BINL RECINL C4L 0.1 R8 3.9k R2L 2.2k R3L
PB Bin (L)
REC in (L)
RECOUT (L) or PBOUT (L) RECMUTE Bcr (SW3) (SW2) EQOUT (SW1) REC/A/B ON/OFF C/N (L) Acr (SW2) C/N
Block Diagram
GND
C1L 4700p AINL ABOUTL
30
-30dBs
-30dBs
29
28
27
26
25 16
24
23
22
21
20
19
18
17
100k
100k
B
A
ADDER
A REC C 1k 22.7k 10.6k 20dB SW3R Mute -30dBs -30dBs 100k -26dBs 14.9k 67k + 27.5dB - N + - -2.5dBs (580mV) (1.64Vpp)
SW1R
SW2R
B
100k
RECEQ
100k
100k
+ - 100k SW4R -5dBs
100k
(24.5mV) -30dBs
1
ATTR RPOUTR ADDINR + C3R C4R 0.1 BINR RECINR C2R 0.1 R1R 15k PB Bin (R) REC in (R) -12.7dBs (180mV) R2R 2.2k
2
3
4
5
6
7
8
9
RECEQ
MS DET
10 (436mV) 11
(38.8mV) EQINR EQOR IREF R4
12
13
14
15
DETALC R6 330k R3R VEE C7 10 + R7 1M MIMS DETMS R5 68k C6 C5 0.33 + 2200p
AINR ABOUTR C1R 4700p
VEE -7V
PB Ain (R)
Rev.3, Jun. 1999, page 5 of 32
RECOUT (R) or PBOUT (R)
EQOUT (R)
VCC +7V
HA12206NT
Unit R : C:F
HA12206NT
Truth Table
Parallel Data Format
NAB SW Position (SW 2) REC / A / B (Pin 20) Acr (Pin 17) L L H H Bcr (Pin 18) L H L H L TYPE I TYPE II TYPE I TYPE II M TYPE I TYPE I TYPE II TYPE II H TYPE I TYPE I TYPE I TYPE I REC-EQ Mode TYPE I TYPE II TYPE I TYPE II
Line Amp (SW 1) ALC REC-EQ Behind (SW 4) Note:
B OFF OFF
A OFF ON
REC *1 ON
1. Follow the position of REC-MUTE pin.
REC-MUTE (Pin 19) L H
REC-EQ Before (SW 3) Active MUTE
ALC ON OFF
Control Pin Position Under the Open Case
Acr (Pin 17) Bcr (Pin 18) REC-MUTE (Pin 19) REC / A / B (Pin 20) L L L M
Rev.3, Jun. 1999, page 6 of 32
Input --
Output --
Measure Other IQ=I (DC SOURCE 3) --
Test No. Symbol IQ 1 2-1 Acr (VIL) Bcr REC-MUTE Ain Bin EQin
(0.5dB) (dB)
Test Conditions
Set No. SG. -- 1 10kHz, -30dBs 2 10kHz, -30dBs 3 1kHz, -26dBs 4 PBOUT AC VM2 PBOUT AC VM2 V(AC VM2) EQOUT AC VM2
VIL
V(DC SOURCE 1) (0.5dB)
2-2 (VIM)
(dB)
RECAB RECAB RPOUT AC VM2 RPOUT AC VM2 V(AC VM2)
5 5
1kHz, -30dBs Bin 1kHz, -30dBs Ain
VIM VIM V(AC VM2)
V(DC SOURCE 1)
2-3 (VIH) Ain Bin EQin RECin RPOUT RPOUT EQOUT RPOUT
(dB)
0.3dB 60dB
Acr Bcr REC-MUTE RECAB AC VM2 AC VM2 V(AC VM2) AC VM2 (dB) (0.5dB) AC VM2
2 3 4 5
10kHz, -30dBs 10kHz, -30dBs 1kHz, -26dBs 1kHz, -30dBs
VIH (Acr, Bcr)
V(DC SOURCE 1)
VIH (REC-MUTE)
VIH
V(DC SOURCE 1) (RECAB)
3-1
GV(1)
6
1kHz, -30dBs Ain
RPOUT AC VM1 GV=20 log {V(AC VM2) / V(AC VM1)} AC VM2 RPOUT AC VM1 GV=20 log {V(AC VM2) / V(AC VM1)} AC VM2 RPOUT AC VM1 GV=20 log {V(AC VM2) / V(AC VM1)} AC VM2 RPOUT AC VM2 Vi=V(AC VM2) at SW5, SW6=REC RPOUT AC VM2 Vo=V(AC VM2) at T.H.D=1% RPOUT Distortion 400 to 30kHz BPF Analyzer RPOUT Distortion 400 to 30kHz BPF Analyzer GV=20 log {V(AC VM2 / Vi)} Vomax=20 log (Vo / 580mV)
3-2
GV(2)
7
1kHz, -30dBs Bin
3-3
GV(3)
8
10kHz, -30dBs Bin
3-4 4 5-1
GV(4) Vomax THD(1)
9 6 6
1kHz, -30dBs RECin 1kHz Ain 1kHz, -30dBs Ain
Rev.3, Jun. 1999, page 7 of 32
HA12206NT
5-2
THD(2)
9
1kHz, -0.7dBs RECin
HA12206NT
Test Conditions (cont)
Rev.3, Jun. 1999, page 8 of 32
Input -- -- Ain Ain/Bin RECin Ain S/N=20 log {580mV / V(Noise)} CCIR / ARM CT=20 log {580mV / V(AC VM2)} CT=20 log {580mV / V(AC VM2)} ALC=20 log {V(AC VM2) / 580mV} VON=20 log {V(AC VM2) / 580mV} at DC VM= Other S/N=20 log {580mV / V(Noise)} CCIR / ARM Output RPOUT RPOUT RPOUT RPOUT RPOUT RPOUT Measure -- -- AC VM2 AC VM2 AC VM2 AC VM2 DC VM DC VM AC VM2 AC VM2 AC VM2 AC VM2 AC VM2 AC VM2 AC VM2 AC VM2 Distortion Analyzer GV REC=20 log {V(AC VM2) / V(AC VM1)} GV REC=20 log {V(AC VM2) / V(AC VM1)} GV REC=20 log {V(AC VM2) / V(AC VM1)} GV REC=20 log {V(AC VM2) / V(AC VM1)} GV REC=20 log {V(AC VM2) / V(AC VM1)} GV REC=20 log {V(AC VM2) / V(AC VM1)} R-MUTE ATT=20 log {436mV / V(AC VM2)} at T.H.D=1% 400 to 30kHz BPF S/N=20 log {436mV / V(AC VM2)} Noise Meter Ain EQin EQin EQin EQin EQin EQin EQin EQin EQin RPOUT EQout EQout EQout EQout EQout EQout EQout EQout EQout EQout --
Test No. Symbol 6-1 S/N (1) S/N (2) 6-2 CT R/L 7 CT A/B 8 ALC 9 VON 10
Set No. 6 9 10 11 12 6
SG. --
-- 1kHz, -18dBs* 1kHz, -18dBs* 1kHz, -0.7dBs 5kHz
11 12-1 12-2 12-3 13-1 13-2 13-3 14 15 16
VOL GV REC N1 GV REC N2 GV REC N3 GV REC C1 GV REC C2 GV REC C3 R-MUTE ATT Vomax REC THD REC
6 13 13 13 13 13 13 14 13 13
1kHz, -30dBs 1kHz, -46dBs 8kHz, -46dBs 12kHz, -46dBs 1kHz, -46dBs 8kHz, -46dBs 12kHz, -46dBs 1kHz, -14dBs* 1kHz 1kHz, -26dBs
17
S/N REC
13
--
Note: or large level without dipping
Test Conditions (cont)
SW Position (Pre-Set for Each TEST)
Set No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 5 *1 RP RP EQ RP RP RP RP RP RP RP RP EQ EQ RP EQ 6 *1 RP RP EQ RP RP RP RP RP RP RP RP EQ EQ RP EQ 8 L L M L L L L H L L L L L L L L 9 L L L M L H H H H H H L L H H L 10 M OFF L H M M L L H M LM H M M M M 7 L M L L L L L L L L L L L L L L 4 -7V -7V -7V -7V -7V -7V -7V -7V -7V -7V -7V -7V -7V -7V -6V -6V 3 -7V -7V -7V -7V -7V -7V -7V -7V -7V -7V -7V -7V -7V -7V -6V -6V
SW-Position 1 2 OFF *1 *2 A *2 B *2 EQ *2 B *2 A *2 B *2 B *2 REC RL A *2 AB *2 REC EQ *2 *2 EQ A *2 EQ *2 DC-SOURCE(V) 1 2 2.5V 5V 0 to VCC 5V 0 to VCC 5V 0 to VCC 5V 0 to VCC 5V 2.5V 5V *1 5V *1 5V *1 5V 2.5V 5V 2.5V 5V *1 5V 2.5V 5V 2.5V 5V 2.5V 5V 2.5V 5V
3 *1 A B EQ B A B B REC A AB REC EQ EQ A EQ
4 *1 *2 *2 *2 *2 *2 *2 *2 *2 LR *2 *2 *2 *2 *2 *2
Note: 1. Either will do
2. Measured channel Lch or Rch
Rev.3, Jun. 1999, page 9 of 32
HA12206NT
HA12206NT
Functional Description
Power Supply Range Table 1 Supply Voltage
Power Supply Range Item Single Supply VCC 6.0V to 7.5V VEE -7.5V to -6.0V | VCC | - | VEE | Inside 1.0V
Note: HA12206NT is designed to operate on split supply.
As VEE pin is joined the substrate of chip, there is the possibility of latch-up in such case that the other pin is supplied a voltage and VEE pin is open. Therefore please use as VEE pin become the lowest voltage of low impedance all the time. When power supply is thrown into this IC, that caution is necessary especially.
Operating Mode Control HA12206NT provides fully electronic switching circuits. And each operating mode control is controlled by parallel data (DC voltage). Table 2 shows the control voltage of each control input pin. Table 2
Pin No. 17, 18, 19
Control Voltage
Lo 0.0 to 1.0 Mid -- Hi 4.0 to VCC Unit V Test Condition
Input Pin Measure
20 Note:
0.0 to 1.0
2.0 to 3.0
4.0 to VCC
V
1. Each pin is pulled down with 100k internal resistor. 17 to 19 pins are low-level, 20 pin is midlevel, when each pin is open. 2. Over shoot level and under shoot level of input signal must be the standardized. (High: Less than VCC, Low: More than -0.2V)
Rev.3, Jun. 1999, page 10 of 32
HA12206NT
PB Equalizer By switching logical input level of pin17 (for Ain) or pin18 (for Bin), you can equalize corresponding to tape position at play back mode. Frequency characteristics of high position (TYPE II) depends on capacitor C1 on the block diagram figure. Figure 1 is shown by a motive of the NAB standard.
GV
1 = C1 * (10.6k+14.9k) 2 = C1 * 14.9k f 1 2
Figure 1 Frequency Characteristics of PB Equalizer
Music Sensor
VCC
0.33 13
330k
to ALC
100k C4 L 23 C4 R 8 100k 100k to ALC LR addend stage R5 C5 100k 43p 100k 100k + - MS DET 16
D VCC (5V) 22k
12 68k 2200p
Detection stage Output stage
Amplification stage
Figure 2 Music Sensor Block Diagram
Rev.3, Jun. 1999, page 11 of 32
HA12206NT
The Sensitivity of Music Sensor Frequency characteristics of MS amplification stage is shown by figure 3.
GV f1 = f2 = f f1 f2 f3 1 [Hz] 2 * C5 * (R5 + 100k) 1 [Hz] 2 * C5 * R5 [Hz]
f3 = 25k
Figure 3 Frequency Characteristic of MS AMP Occasion of the external component of figure 2, f1 is 430Hz and f2 is 1.1kHz. As the MS sensitivity is prescribed at 5kHz, this stage's gain is 7.9dB. But in only one-sided channel input case, this gain is considered as -6dB down, because the other channel input pin is imaginary earth. That is, the gain from RPOUT to MSDET is 1.86dB. As the detection sensitivity at MSDET is fixed 130mVrms, the sensitivity at RPOUT (8 pin or 23 pin) is calculated by the following formula.
10 ^ 130mV = 105mV 1.86 20
Because of RPOUT=580mVrms=0dB, therefore, the MS sensitivity becomes -14.8dB. That is the detection level. Time Constant of Detection Figure 4 (1) generally shows that detection time is in proportion to value of capacitor C16. But, with 1 2 Attack* and Recovery* the detection time differs exceptionally. Note: 1. Attack : Non-music Music 2. Recovery : Music Non-music
Detection time Detection time
Recovery
Attack
Detection time
Recovery
Recovery Attack
Attack C6
R6
Detection level
Input level
Function Characteristics of MS (1)
Function Characteristics of MS (2)
Function Characteristics of MS (3)
Figure 4 Function Characteristic of MS Like the figure 4 (2), Recovery time is variably possible by value of resistor R6. But Attack time gets about fixed value. Attack time has dependence by input level. When a large signal is inputted, Attack time is short tendency.
Rev.3, Jun. 1999, page 12 of 32
HA12206NT
Music Sensor Output (MSOUT) Because MS out pin is connected to the collector of NPN type directly, it is requested to use pull up resistor (RL=10k to 22k) Output level is "High" sensing no signal. And output level is "Low" sensing signal. Please take notice of MS Low level voltage (GND+0.9V). The connected supply voltage must be less than VCC voltage, with MSOUT pull up resistor. Automatic Level Control (ALC) ALC is the input decay rate variable system. It has internal variable resistors of pin6 (pin25) by RECOUT signal that is inputted to pin8 (pin23). The operation is similitude to MS, detected by pin15. The signal input pin is pin5 (pin26). Resistor R1, R2 and capacitor C2, external components, for the input circuit are commended as figure 6. These are requested to use value of the block diagram figure for performance maintenance of S/N, T.H.D. etc. Figure 5 shows the relation with R1 front REC IN point and RPOUT. ALC operation level is 775mVrms {standard level (580mVrms) +2.5dB}. And it is designed to operate from 0dB to +15dB as 775mVrms=0dB. Adopted maximum value circuit, ALC is operated by a large channel of a signal. ALC on/off is linked with REC mute. When REC mute is on, ALC is off.
RPOUT
775mV 580mV
2.5dB 15dB RECIN
Figure 5 ALC Operation Level
R1 Input
RECIN C2 5
24.5mV 27.5dB 7
RPOUT 580mV Output C4
6 R2
ATT
ALC
8
ADDIN R7 DETALC VCC
+
15 C7
Figure 6 ALC Block Diagram REC-Equalizer REC mute is located at input-part of REC-equalizer. Therefore it has realized low pop noise. But because there is deference DC offset at the each mode of REC-equalizer, it is necessary for a coupling capacitor between EQOUT pin and recording head.
Rev.3, Jun. 1999, page 13 of 32
HA12206NT
Absolute Maximum Rating (Ta = 25C)
Item Max supply voltage Max supply voltage Power dissipation Operating temperature Storage temperature Operating voltage Symbol VCC max VEE max Pd Topr Tstg Vopr Rating +8 -8 500 -40 to +75 -55 to +125 VCC=-VEE=6 to 7.5 Unit V V mW C C V Ta75C Note
Rev.3, Jun. 1999, page 14 of 32
Application Terminal Input Output Bcr L R 14 17 to 20 20 17 to 20 L No signal fin (Hz) R COM Note Vin (dBs) Other
Item A Active TYPE I TYPE I --
Symbol
Test Condition IC Condition REC/ REC Min Typ Max Unit A/B MUTE Acr
Quiescent current
Logical threshold
Line amp. gain
Maximum output THD
IQ VIL VIM VIH GV(1) GV(2) GV(3) GV(4) Vomax THD(1) THD(2) -- -- -- A B B REC A A REC -- -- -- Mute Mute Mute Mute Mute Mute Active 0dB 0dB 0dB 0dB THD=1% 0dB, BW 400Hz to 30kHz +12dB (ALC ON) BW 400Hz to 30kHz 2 4 4 5 2 2 5 1 2 24 29 7 24 24 7 7 24 7 7 7 24 24 24 16 2, 3 3 +12dB (ALC ON) 29 29 27 26 29 29 7 7 7 7 7 7 7 24 24 24 24 24 24 24 29 7 29 27 27 26 29 29 26 Rg=10k, CCIR/ARM 2 S=580mVrms Rg=2.2k, CCIR/ARM 2 S=580mVrms +12dB +12dB Mute TYPE I TYPE I -- -- -- -18 -18 -0.7 -- -- A REC Mute TYPE I TYPE I -- A A/B Mute TYPE I TYPE I 1k Mute TYPE I TYPE I 1k REC Active TYPE I TYPE I 1k A Mute TYPE I TYPE I 5k A Mute TYPE I TYPE I -- -- -- -- TYPE I TYPE I TYPE I TYPE I TYPE I TYPE I TYPE I -- -- -- -- -- -- TYPE I 1k TYPE I 1k TYPE II 10k TYPE I 1k TYPE I 1k TYPE I 1k TYPE I 1k -- -- -- -- dB dB dB dB
10.0 16.0 -0.2 -- 2.0 -- 4.0 -- 26.0 27.5 26.0 27.5 20.9 22.9 26.0 27.5 12.0 13.0 0.05 -- 1.0 -- mA V V V dB dB dB dB dB % % -- -- -- -- -30 -30 -30 -30 -- -30 -0.7
22.0 1.0 3.0 VCC 29.0 29.0 24.9 29.0 -- 0.3 3.0
Signal to noise ratio
S/N(1)
70
78
S/N(2)
73
81
Channel separation Crosstalk
CT R/L CT A/B
70 60
80 70
ALC operation level MS sensing level MS output low level
ALC VON VOL
0.0 2.5 5.5 dB -18.7 -14.7 -10.7 dB -- 1.0 1.5 V
2 2 4 5 2 2
Note: 1. VCC(VEE) = 6.0V
2. From REC in point
Electrical Characteristics (Ta=25C, VCC=7.0V (VEE), 0dB=580mVrms=-2.52dBs (Vout))
Rev.3, Jun. 1999, page 15 of 32
3. For inputting signal to one side channel
HA12206NT
Input Bcr fin (Hz) R L R Note L COM EQin (dBs) Other
Application Terminal Output
HA12206NT
Item Active Active Active Active Active Active Mute -46 -46 -46 -46 -46 -46 -14 +12dB THD=1% Rg=5.1k, A-WTG S=-5dBs 9 9 9 22 10 21 22 10 21 22 10 21 -- -26 -- 4 9 9 9 9 9 9 9 22 22 22 22 22 22 22 10 10 10 10 10 10 10 21 21 21 21 21 21 21 Active TYPE I TYPE I 1k Active TYPE I TYPE I 1k Active TYPE I TYPE I -- 21.7 27.1 34.4 25.6 32.5 39.4 -- dB dB dB dB dB dB dB dBs A A % dB A A A A A A A A TYPE I TYPE I 1k TYPE I TYPE I 8k TYPE I TYPE I 12k TYPE I TYPE II 1k TYPE I TYPE II 8k TYPE I TYPE II 12k TYPE I TYPE I 1k
Symbol
Test Condition IC Condition REC/ RECMin Typ Max Unit A/B MUTE Acr
Rev.3, Jun. 1999, page 16 of 32
REC-EQ frequency response Normal speed Normal tape REC-EQ frequency response Normal speed Chrom tape REC-MUTE attenuation
GV REC-N1 GV REC-N2 GV REC-N3 GV REC-C1 GV REC-C2 GV REC-C3 R-MUTE ATT
18.7 20.2 23.1 25.1 28.4 31.4 22.6 24.1 28.5 30.5 33.2 36.4 70 80
REC-EQ maximum output Vomax REC 4.0 REC-EQ THD THD REC -- REC-EQ S/N S/N REC 52
7.0 -- 0.35 0.7 60 --
Electrical Characteristics (Ta=25C, VCC=7.0V (VEE), 0dB=580mVrms=-2.52dBs (Vout)) (cont)
Note: 4. VCC=6.0V (V)
HA12206NT
Test Circuit
Rev.3, Jun. 1999, page 17 of 32
HA12206NT
Characteristic Curves
Quiescent Current vs. Supply Voltage (PB mode) 18 Ta=25C Ain, Bin, Ain, Bin, , Nor , Nor , Cro , Cro
17
Quiescent Current ICC (mA)
16
15
14
13
12 5 6 7 8 Supply Voltage VCC (V) 9
Quiescent Current vs. Supply Voltage (REC mode) 18 Ta=25C Ain, Bin, Ain, Bin, , Nor , Nor , Cro , Cro
17
Quiescent Current ICC (mA)
16
15
14
13
12 5 6 7 8 Supply Voltage VCC (V) 9
Rev.3, Jun. 1999, page 18 of 32
HA12206NT
Quiescent Current vs. Supply Voltage (PB mode) -12 Ta=25C Ain, Bin, Ain, Bin, , Nor , Nor , Cro , Cro
-13
Quiescent Current IEE (mA)
-14
-15
-16
-17
-18 -5
-6
-7 -8 Supply Voltage VEE (V)
-9
Quiescent Current vs. Supply Voltage (REC mode) -12 Ta=25C Ain, Bin, Ain, Bin, , Nor , Nor , Cro , Cro
-13
Quiescent Current IEE (mA)
-14
-15
-16
-17
-18 -5
-6
-7 -8 Supply Voltage VEE (V)
-9
Rev.3, Jun. 1999, page 19 of 32
HA12206NT
RPOUT vs. Frequency (1) Ain mode 30 28 26 24
GV RPOUT (dB)
VCC=7V Ta=25C
120
22 20 18 16 14 12 10 10
70
100
1k 10k Frequency (Hz) RPOUT vs. Frequency (2) Rin mode
100k
1M
30 28 26 24
GV RPOUT (dB)
VCC=7V Ta=25C
22 20 18 16 14 12 10 10
100
1k 10k Frequency (Hz)
100k
1M
Rev.3, Jun. 1999, page 20 of 32
HA12206NT
RPOUT Total Harmonic Distortion vs. Input Level 10 VCC=7V, f=1kHz, Vout=580mVrms Ta=25C Ain (NORM) Ain (CROM) Bin (NORM) 1.0
Total Harmonic Distortion T.H.D. (%)
0.1
0.01 -20
-10
0 Input Level Vin (dB)
10
20
RPOUT Total Harmonic Distortion vs. Output Level 10 VCC=7V, f=1kHz, Vout=580mVrms Ta=25C Rin (RM-ON) Rin (RM-OFF) 1.0
Total Harmonic Distortion T.H.D. (%)
0.1
0.01 -20
-10
0 10 Output Level Vout (dB)
20
Rev.3, Jun. 1999, page 21 of 32
HA12206NT
RPOUT Maximum Output Level vs. Supply Voltage 20
Maximum Output Level Vomax (dB)
15
10
Ta=25C, f=1kHz, RPOUT=580mVrms=0dB Ain Bin Rin RM-ON (ALC OFF) Rin RM-OFF (ALC ON)
5
0 4 5 6 7 Supply Voltage VCC (V) 8 9
RPOUT Signal to Noise Ratio vs. Supply Voltage 85
Signal to Noise Ratio S/N (dB)
80
75
Ta=25C, CCIR/ARM RPOUT=580mVrms=0dB Ain NORM Ain CROM Bin Rin RM-ON Rin RM-OFF
70
65 4 5 6 7 Supply Voltage VCC (V) 8 9
Rev.3, Jun. 1999, page 22 of 32
HA12206NT
Line Amp. Crosstalk vs. Frequency VCC=7V, Ta=25C, 0dB=RPOUT=580mV, -10 Vin=+10dB, Normal, Ain mode -20
Line Amp. Crosstalk (dB)
0
-30 -40 -50 -60 -70 -80 -90 -100 100 Rin mode (REC) Bin mode
1k
10k 100k Frequency (Hz) Line Amp. Channel Separation vs. Frequency
1M
10M
0 -10
Line Amp. Channel Separation (dB)
-20 -30 -40 -50 -60 -70 -80 -90
VCC=7V, Ta=25C, 0dB=RPOUT=580mV, Vin=+10dB, Normal, Ain mode
LR RL
-100 100
1k
10k 100k Frequency (Hz)
1M
10M
Rev.3, Jun. 1999, page 23 of 32
HA12206NT
EQOUT vs. Frequency VCC=7V Ta=25C
50
40
GV EQOUT (dB)
30
Chrom
20
Norm
10
10
100
1k Frequency (Hz)
10k
100k
REC-EQ Total Harmonic Distortion (Normal) vs. Output Level VCC=7V, Ta=25C, 400 to 30kHz BPF
Total Harmonic Distortion T.H.D. (%)
10.0
5kHz 1.0 1kHz
0.1 -10
-5
0 5 Output Level Vout (dBs)
10
15
Rev.3, Jun. 1999, page 24 of 32
HA12206NT
REC-EQ Total Harmonic Distortion (Chrom) vs. Output Level VCC=7V, Ta=25C, 400 to 30kHz BPF
Total Harmonic Distortion T.H.D. (%)
10.0
1.0
5kHz
0.1 -10
1kHz -5 0 5 Output Level Vout (dBs) 10
REC-EQ Maximum Output Level vs. Supply Voltage 20 Norm Crom T.H.D1% Ta=25C 15
Maximum Output Level Vomax (dBs)
10
5
0 4 5 6 7 Supply Voltage VCC (V) 8 9
Rev.3, Jun. 1999, page 25 of 32
HA12206NT
REC-EQ Signal to Noise Ratio vs. Supply Voltage 70 0dB=Vout=-5dBs, A-WTG, Ta=25C
REC-EQ Signal to Noise Ratio S/N (dB)
65 Normal Chrom 60
55
50 4 5 6 7 Supply Voltage VCC (V) 8 9
REQ-EQ Channel Separation vs. Frequency 60 40
REQ-EQ Channel Separation (dB)
VCC=7V, Ta=25C, Vin=+12dB, Normal mode RR reference
20 0 -20
RL -40 -60 -80 -100 -120 -140 10 LR
100
1k Frequency (Hz)
10k
100k
Rev.3, Jun. 1999, page 26 of 32
HA12206NT
REQ-EQ Mute Attenuation vs. Frequency 60 40 20 VCC=7V, Ta=25C, Vin=+20dB, Normal mode
REQ-EQ Mute Attenuation (dB)
reference 0 -20 -40 -60 -80 -100 -120 -140 10
,
, MUTE
B, MUTE
100
1k Frequency (Hz) ALC Operate Level vs Input Level
10k
100k
30 VCC=7V, Ta=25C, Single or Both input 100Hz to 10kHz
Output Level (dB) 0dB=580mVrms
20
10
0
-10
-20 -20
-10 0 10 20 Input Level Vin (dB) Rin=180mVrms=0dB
30
Rev.3, Jun. 1999, page 27 of 32
HA12206NT
ALC Total Harmonic Distortion vs. Input Level VCC=7V, Ta=25C, Single or Both input
Total Harmonic Distortion T.H.D. (%)
1.0 0.5 10kHz 100Hz 0.1
0.05 1kHz
0.01 -20
-10 0 10 20 Input Level Vin (dB) Rin=180mVrms=0dB ALC Operate Level vs. Frequency
30
10 VCC=7V, Vin=+12dB, Vout=580mVrms=0dB Ta=25C Single input Both input 5
Output Level (dB)
0
-5 10
50
100
500 1k Frequency (Hz)
5k
10k
50k 100k
Rev.3, Jun. 1999, page 28 of 32
HA12206NT
MS Sensing Level vs Frequency VCC=7V, Ta=25C, LoHi -2 MSOUT HiLo -4
MS Sensing Level (dB)
0
-6 -8 -10 -12 -14 -16 -18 -20 100
500
1k
5k Frequency (Hz)
10k
50k
100k
Singnal Sensing Time vs. Capacitor 100 VCC=7V, Ta=25C, f=5kHz MSOUT 50 AinRPOUT=580mVrms=0dB 0dB -5dB -10dB 20 10 5 2
PBOUT VCC 14 330k MSDET 13
Singnal Sensing Time (ms)
1
MSOUT
0.5 0.2 0.1 0.01
0.05
0.1 Capacitor (mF)
0.5
1.0
Rev.3, Jun. 1999, page 29 of 32
HA12206NT
No Signal Sensing Time vs. Resistor 1000 VCC=7V, Ta=25C, f=5kHz MSOUT AinRPOUT=580mVrms=0dB 500 0dB -5dB 200 V 14
CC
No Signal Sensing Time (ms)
100 50 20 10 5 2 1 10k
0.33F MSDET 13
+
PBOUT MSOUT
50k
100k Resistor (W)
500k
1M
VMSOUT vs. Resistor RL 5 VCC=7V, Ta=25C, f=5kHz MSOUT AinRPOUT=580mVrms=0dB Vin=0dB
5V RL MSOUT 16
4
VMSOUT (V)
3
2
1
0 100
500
1k
5k 10k Resistor RL ()
50k 100k
500k 1M
Rev.3, Jun. 1999, page 30 of 32
HA12206NT
Package Dimensions
Unit: mm
27.10 28.10 Max 30 16
10.0 Max
1
1.5 Max
1.0
15
5.06 Max
8.8
10.16
0.51 Min
2.54 Min
1.78 0.25
0.25 - 0.05 1 - 13
Hitachi Code JEDEC EIAJ Weight (reference value)
+ 0.10
0.48 0.10
DP-30S -- Conforms 1.98 g
Rev.3, Jun. 1999, page 31 of 32
HA12206NT
Disclaimer
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.
Sales Offices
Hitachi, Ltd.
Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica : http://semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia : http://sicapac.hitachi-asia.com Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to:
Hitachi Europe GmbH Electronic Components Group Dornacher Strae 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 585160 Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00, Singapore 049318 Tel : <65>-538-6533/538-8577 Fax : <65>-538-6933/538-3877 URL : http://www.hitachi.com.sg Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road, Hung-Kuo Building, Taipei (105), Taiwan Tel : <886>-(2)-2718-3666 Fax : <886>-(2)-2718-8180 Telex : 23222 HAS-TP URL : http://www.hitachi.com.tw Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon, Hong Kong Tel : <852>-(2)-735-9218 Fax : <852>-(2)-730-0281 URL : http://www.hitachi.com.hk
Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223
Copyright Hitachi, Ltd., 2000. All rights reserved. Printed in Japan. Colophon 2.0
Rev.3, Jun. 1999, page 32 of 32


▲Up To Search▲   

 
Price & Availability of HA12206

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X